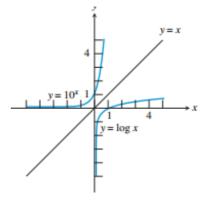
3.2-3.3 Logarithmic Functions

Every function of the form $f(x) = a^x$ passes the Horizontal Line Test and therefore must have an inverse function. This inverse function is called the logarithmic function with base a.

Definition of Logarithmic Function with Base a

For x > 0, a > 0, and $a \ne 1$,


 $y = \log_a x$ if and only if $x = a^y$.

The function given by

$$f(x) = \log_a x$$

 $f(x) = \log_a x$ Read as "log base a of x."

is called the **logarithmic function with base** a.

Oct 22-7:13 PM

Equivalent Equations

Logarithmic Form: $\log_a x = y$

Exponential Form: $a^y = x$

Rewrite the function in exponential form:

1.)
$$\log_5 \frac{1}{5} = -1 \left(\frac{5}{5} \right)^{-1} = \frac{1}{5}$$

tial form:
$$|4|^2 = |9|$$

2.) $\log_{14} 196 = 2$

3.)
$$\log_{19} 1 = 0$$

Rewrite the function in logarithmic form:

4.)
$$2^3 = 8$$

5.)
$$10^1 = 10$$

6.)
$$\left(\frac{1}{5}\right)^{-3} = 125$$

$$\log \frac{1}{5} |25 = -3|$$

Evaluate the logarithmic expressions without a calculator.

7.) $\log_7 343$ (3)

- 8.) $\log_{12} 12$
- 9.) $\log_{16} 4$
- 10.) $\log_{\frac{1}{5}} 25$

- **11.)** $\log_3 \sqrt{3}$
 - 3 = \(\frac{3}{3} \)
 - 3 = 3 1/2
 - 2

- **12.)** $\log_4 4^{.38}$
 - ? = 4.38
 - (38.)

Mar 20-7:57 AM

Basic Properties of Logarithms

For $0 < b \neq 1$, x > 0, and any real number y,

- $\log_b 1 = 0$ because $b^0 = 1$.
- $\log_b b = 1$ because $b^1 = b$.
- $\log_b b^y = y$ because $b^y = b^y$.
- $b^{\log_b x} = x$ because $\log_b x = \log_b x$.

Basic Properties of Common Logarithms

Let x and y be real numbers with x > 0.

- $\log 1 = 0$ because $10^0 = 1$.
- $\log 10 = 1$ because $10^1 = 10$.
- $\log 10^y = y$ because $10^y = 10^y$.
- $10^{\log x} = x$ because $\log x = \log x$.

Using Properties of Logarithms

- **13.)** Evaluate:
- log 100

10 = 100

14.) Evaluate: $\log \sqrt[5]{10}$

$$|O|^2 = |O|^{1/5} \left(\frac{1}{5}\right)$$

- 15.) Simplify:
- **16.)** Simplify:

- **17.)** Simplify:
 - $\log_4 16^x$

- 18.) Simplify: $\log_{20} 8000^x$

 - 20² = 20³×

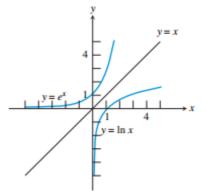
Mar 20-7:57 AM

The Natural Logarithmic Function

 $f(x) = e^x$ is one-to-one so it has an inverse function.

The inverse function is called the natural logarithmic function.

Denoted as: In x


Note: The natural logarithm is written without a base. The base is understood to be e.

The Natural Logarithmic Function

The function defined by

$$f(x) = \log_e x = \ln x, \quad x > 0$$

is called the natural logarithmic function.

Basic Properties of Natural Logarithms

Let x and y be real numbers with x > 0.

- $\ln 1 = 0$ because $e^0 = 1$.
- $\ln e = 1$ because $e^1 = e$.
- $\ln e^y = y$ because $e^y = e^y$.
- $e^{\ln x} = x$ because $\ln x = \ln x$.

Use properties of natural logarithms to rewrite each expression.

19.)
$$\ln \frac{1}{e} = \log_e \frac{1}{e}$$

20.)
$$e^{\ln 5}$$

$$e^{?} = \frac{1}{\ell}$$

$$\frac{1}{e}$$
 $\frac{1}{e}$ $\frac{1}{e}$

21.)
$$\ln e^0$$

Mar 20-7:58 AM

3.3 Properties of Logarithmic Functions

Change of Base Formula:

Let u, b, and c be positive numbers with

and $h \neq 1$. Then: $c \neq 1$

$$\log_c u = \frac{\log_b u}{\log_b c}$$

In particular, $\log_c u = \frac{\log u}{\log c}$ and $\log_c u = \frac{\ln u}{\ln c}$.

valuate the logarithm using the change-of-base formula. Round bur answers to 3 decimal places.

$$3.)\log_3\left(\frac{3}{5}\right)$$

Properties of Logarithms

Let b, R, and S be positive numbers such that and c alny±rleal number.

 $\log_b(RS) = \log_b R + \log_b S$ **Product Property:**

 $\log_b \left(\frac{R}{S}\right) = \log_b R - \log_b S$ **Quotient Property:**

Power Property: $\log_b R^c = c \log_b R$

Mar 20-11:58 AM

EXPLORATION 2 Discovering Relationships and Nonrelationships

Of the eight relationships suggested here, four are true and four are false (using values of x within the domains of both sides of the equations). Thinking about the properties of logarithms, make a prediction about the truth of each statement. Then test each with some specific numerical values for x. Finally, compare the graphs of the two sides of the equation.

1.
$$\ln(x + 2) = \ln x + \ln 2$$

1.
$$\ln(x + 2) = \ln x + \ln 2$$
 2. $\log_3(7x) = 7 \log_3 x$

3.
$$\log_2(5x) = \log_2 5 + \log_2 x$$
 4. $\ln \frac{x}{5} = \ln x - \ln 5$

4.
$$\ln \frac{x}{5} = \ln x - \ln 5$$

$$5. \log \frac{x}{4} = \frac{\log x}{\log 4}$$

6.
$$\log_4 x^3 = 3 \log_4 x$$

7.
$$\log_5 x^2 = (\log_5 x)(\log_5 x)$$
 8. $\log |4x| = \log 4 + \log |x|$

8.
$$\log |4x| = \log 4 + \log |x|$$

Which four are true, and which four are false?

Expanding a Logarithmic Expression

4.) Expand $\log_2 \frac{7x^3}{y}$. Assume x and y are positive.

Use properties of logarithms to expand each expression.

 $5.)\log_4 5x^3y$

Mar 20-11:58 AM

Condensing a Logarithmic Expression

Condense the expression.

10.)
$$\log 6 + 2 \log 2 - \log 3$$

3.1-3.3 Notes.notebook

October 04, 2017