7. $\log 10^3 = 3$ 8. $\log 10,000 = \log 10^4 = 4$ 9. $\log 100,000 = \log 10^5 = 5$ **10.** $\log 10^{-4} = -4$ **11.** $\log \sqrt[3]{10} = \log 10^{1/3} = \frac{1}{2}$ 12. $\log \frac{1}{\sqrt{1000}} = \log 10^{-3/2} = \frac{-3}{2}$ **13.** $\ln e^3 = 3$ **14.** $\ln e^{-4} = -4$ 15. $\ln \frac{1}{e} = \ln e^{-1} = -1$ **16.** $\ln 1 = \ln e^0 = 0$ 17. $\ln \sqrt[4]{e} = \ln e^{1/4} = \frac{1}{4}$ **18.** $\ln \frac{1}{\sqrt{a^7}} = \ln e^{-7/2} = \frac{-7}{2}$ **19.** 3, because $b^{\log_b 3} = 3$ for any b > 0. **20.** 8, because $b^{\log_b 8} = 8$ for any b > 0. **21.** $10^{\log(0.5)} = 10^{\log_{10}(0.5)} = 0.5$ **22.** $10^{\log 14} = 10^{\log_{10} 14} = 14$ **23.** $e^{\ln 6} = e^{\log_e 6} = 6$ **24.** $e^{\ln(1/5)} = e^{\log_e(1/5)} = 1/5$ **25.** $\log 9.43 \approx 0.9745 \approx 0.975$ and $10^{0.9745} \approx 9.43$ **26.** $\log 0.908 \approx -0.042$ and $10^{-0.042} \approx 0.908$ **27.** log (-14) is undefined because -14 < 0. **28.** $\log(-5.14)$ is undefined because -5.14 < 0. **29.** ln 4.05 \approx 1.399 and $e^{1.399} \approx$ 4.05 **30.** ln 0.733 \approx -0.311 and $e^{-0.311} \approx$ 0.733 **31.** $\ln(-0.49)$ is undefined because -0.49 < 0. **32.** $\ln(-3.3)$ is undefined because -3.3 < 0. **33.** $x = 10^2 = 100$ **34.** $x = 10^4 = 10.000$ **35.** $x = 10^{-1} = \frac{1}{10} = 0.1$ **36.** $x = 10^{-3} = \frac{1}{1000} = 0.001$ **37.** f(x) is undefined for x > 1. The answer is (d). **38.** f(x) is undefined for x < -1. The answer is (b). **39.** f(x) is undefined for x < 3. The answer is (a). **40.** f(x) is undefined for x > 4. The answer is (c).

41. Starting from $y = \ln x$: translate left 3 units.

42. Starting from $y = \ln x$: translate up 2 units.

43. Starting from $y = \ln x$: reflect across the *y*-axis and translate up 3 units.

44. Starting from $y = \ln x$: reflect across the y-axis and translate down 2 units.

45. Starting from $y = \ln x$: reflect across the *y*-axis and translate right 2 units.

46. Starting from $y = \ln x$: reflect across the *y*-axis and translate right 5 units.

47. Starting from $y = \log x$: translate down 1 unit.

48. Starting from $y = \log x$: translate right 3 units.

49. Starting from $y = \log x$: reflect across both axes and vertically stretch by 2.

50. Starting from $y = \log x$: reflect across both axes and vertically stretch by 3.

51. Starting from $y = \log x$: reflect across the y-axis, translate right 3 units, vertically stretch by 2, translate down 1 unit.

52. Starting from $y = \log x$: reflect across both axes, translate right 1 unit, vertically stretch by 3, translate up 1 unit.

