6. $\log _{2} x^{-2}=-2 \log _{2} x$
7. $\log x^{3} y^{2}=\log x^{3}+\log y^{2}=3 \log x+2 \log y$
8. $\log x y^{3}=\log x+\log y^{3}=\log x+3 \log y$
9. $\ln \frac{x^{2}}{y^{3}}=\ln x^{2}-\ln y^{3}=2 \ln x-3 \ln y$
10. $\log 1000 x^{4}=\log 1000+\log x^{4}=3+4 \log x$
11. $\log \sqrt[4]{\frac{x}{y}}=\frac{1}{4}(\log x-\log y)=\frac{1}{4} \log x-\frac{1}{4} \log y$
12. $\ln \frac{\sqrt[3]{x}}{\sqrt[3]{y}}=\frac{1}{3}(\ln x-\ln y)=\frac{1}{3} \ln x-\frac{1}{3} \ln y$
13. $\log x+\log y=\log x y$
14. $\log x+\log 5=\log 5 x$
15. $\ln y-\ln 3=\ln (y / 3)$
16. $\ln x-\ln y=\ln (x / y)$
17. $\frac{1}{3} \log x=\log x^{1 / 3}=\log \sqrt[3]{x}$
18. $\frac{1}{5} \log z=\log z^{1 / 5}=\log \sqrt[5]{z}$
19. $2 \ln x+3 \ln y=\ln x^{2}+\ln y^{3}=\ln \left(x^{2} y^{3}\right)$
20. $4 \log y-\log z=\log y^{4}-\log z=\log \left(\frac{y^{4}}{z}\right)$
21. $4 \log (x y)-3 \log (y z)=\log \left(x^{4} y^{4}\right)-\log \left(y^{3} z^{3}\right)$

$$
=\log \left(\frac{x^{4} y^{4}}{y^{3} z^{3}}\right)=\log \left(\frac{x^{4} y}{z^{3}}\right)
$$

22. $3 \ln \left(x^{3} y\right)+2 \ln \left(y z^{2}\right)=\ln \left(x^{9} y^{3}\right)+\ln \left(y^{2} z^{4}\right)$

$$
=\ln \left(x^{9} y^{5} z^{4}\right)
$$

In \#23-28, natural logarithms are shown, but common (base-10) logarithms would produce the same results.
23. $\frac{\ln 7}{\ln 2} \approx 2.8074$
24. $\frac{\ln 19}{\ln 5} \approx 1.8295$
25. $\frac{\ln 175}{\ln 8} \approx 2.4837$
26. $\frac{\ln 259}{\ln 12} \approx 2.2362$
27. $\frac{\ln 12}{\ln 0.5}=-\frac{\ln 12}{\ln 2} \approx-3.5850$
28. $\frac{\ln 29}{\ln 0.2}=-\frac{\ln 29}{\ln 5} \approx-2.0922$
29. $\log _{3} x=\frac{\ln x}{\ln 3}$
30. $\log _{7} x=\frac{\ln x}{\ln 7}$
31. $\log _{2}(a+b)=\frac{\ln (a+b)}{\ln 2}$
32. $\log _{5}(c-d)=\frac{\ln (c-d)}{\ln 5}$
33. $\log _{2} x=\frac{\log x}{\log 2}$
34. $\log _{4} x=\frac{\log x}{\log 4}$
35. $\log _{1 / 2}(x+y)=\frac{\log (x+y)}{\log (1 / 2)}=-\frac{\log (x+y)}{\log 2}$
36. $\log _{1 / 3}(x-y)=\frac{\log (x-y)}{\log (1 / 3)}=-\frac{\log (x-y)}{\log 3}$
37. Let $x=\log _{b} R$ and $y=\log _{b} S$.

Then $b^{x}=R$ and $b^{y}=S$, so that
$\frac{R}{S}=\frac{b^{x}}{b^{y}}=b^{x-y}$
$\log _{b}\left(\frac{R}{S}\right)=\log _{b} b^{x-y}=x-y=\log _{b} R-\log _{b} S$
38. Let $x=\log _{b} R$. Then $b^{x}=R$, so that
$R^{c}=\left(b^{x}\right)^{c}=b^{c \cdot x}$
$\log _{b} R^{c}=\log _{b} b^{c \cdot x}=c \cdot x=c \log _{b} R$
39. Starting from $g(x)=\ln x$: vertically shrink by a factor $1 / \ln 4 \approx 0.72$.

40. Starting from $g(x)=\ln x$: vertically shrink by a factor $1 / \ln 7 \approx 0.51$.

41. Starting from $g(x)=\ln x$: reflect across the x-axis, then vertically shrink by a factor $1 / \ln 3 \approx 0.91$.

42. Starting from $g(x)=\ln x$: reflect across the x-axis, then shrink vertically by a factor of $1 / \ln 5 \approx 0.62$.

43. (b): $[-5,5]$ by $[-3,3]$, with $\mathrm{Xscl}=1$ and $\mathrm{Yscl}=1$ (graph $y=\ln (2-x) / \ln 4)$.
44. $(\mathrm{c}):[-2,8]$ by $[-3,3]$, with $\mathrm{Xscl}=1$ and $\mathrm{Yscl}=1$ (graph $y=\ln (x-3) / \ln 6)$.
45. (d): $[-2,8]$ by $[-3,3]$, with $\mathrm{Xscl}=1$ and $\mathrm{Yscl}=1$ (graph $y=\ln (x-2) / \ln 0.5$).
46. (a): $[-8,4]$ by $[-8,8]$, with $\mathrm{Xscl}=1$ and $\mathrm{Yscl}=1$ (graph $y=\ln (3-x) / \ln 0.7)$.
47.

$[-1,9]$ by $[-1,7]$
Domain: $(0, \infty)$
Range: $(-\infty, \infty)$
Continuous
Always increasing
Asymptote: $x=0$
$\lim _{x \rightarrow \infty} f(x)=\infty$
$f(x)=\log _{2}(8 x)=\frac{\ln (8 x)}{\ln (2)}$
48.

$[-1,9]$ by $[-5,2]$
Domain: $(0, \infty)$
Range: $(-\infty, \infty)$
Continuous
Always decreasing
Asymptote: $x=0$
$\lim _{x \rightarrow \infty} f(x)=-\infty$
$f(x)=\log _{1 / 3}(9 x)=\frac{\ln (9 x)}{\ln \left(\frac{1}{3}\right)}$
49.

$[-10,10]$ by $[-2,3]$
Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $(-\infty, \infty)$
Discontinuous at $x=0$
Decreasing on interval $(-\infty, 0)$; increasing on interval $(0, \infty)$
Asymptote: $x=0$
$\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow-\infty} f(x)=\infty$,
50.

Domain: $(0, \infty)$
Range: $(-\infty, \infty)$
Continuous
Always increasing
Asymptote: $x=0$
$\lim _{x \rightarrow \infty} f(x)=\infty$
51. In each case, take the exponent of 10 , add 12 , and multiply the result by 10 .
(a) 0
(b) 10
(c) 60
(d) 80
(e) 100
(f) $120 \quad\left(1=10^{0}\right)$
52. (a) $R=\log \frac{250}{2}+4.25=\log 125+4.25 \approx 6.3469$.
(b) $R=\log \frac{300}{4}+3.5=\log 75+3.5 \approx 5.3751$
53. $\log \frac{I}{12}=-0.00235(40)=-0.094$, so
$I=12 \cdot 10^{-0.094} \approx 9.6645$ lumens.
54. $\log \frac{I}{12}=-0.0125(10)=-0.125$, so
$I=12 \cdot 10^{-0.125} \approx 8.9987$ lumens.
55. From the change-of-base formula, we know that
$f(x)=\log _{3} x=\frac{\ln x}{\ln 3}=\frac{1}{\ln 3} \cdot \ln x \approx 0.9102 \ln x$.
$f(x)$ can be obtained from $g(x)=\ln x$ by vertically stretching by a factor of approximately 0.9102 .
56. From the change-of-base formula, we know that
$f(x)=\log _{0.8} x=\frac{\log x}{\log 0.8}=\frac{1}{\log 0.8} \cdot \log x \approx-10.32 \log x$.
$f(x)$ can be obtained from $g(x)=\log x$ by reflecting across the x-axis and vertically stretching by a factor of approximately 10.32 .
57. True. This is the product rule for logarithms.
58. False. The logarithm of a positive number less than 1 is negative. For example, $\log 0.01=-2$.
59. $\log 12=\log (3 \cdot 4)=\log 3+\log 4$ by the product rule. The answer is B.
60. $\log _{9} 64=(\ln 64) /(\ln 9)$ by the change-of-base formula. The answer is C.
61. $\ln x^{5}=5 \ln x$ by the power rule. The answer is A .

