6. $\log_2 x^{-2} = -2 \log_2 x$ 7. $\log x^3 y^2 = \log x^3 + \log y^2 = 3 \log x + 2 \log y$ 8. $\log xy^3 = \log x + \log y^3 = \log x + 3 \log y$ 9. $\ln \frac{x^2}{v^3} = \ln x^2 - \ln y^3 = 2 \ln x - 3 \ln y$ **10.** $\log 1000x^4 = \log 1000 + \log x^4 = 3 + 4 \log x$ **11.** $\log \sqrt[4]{\frac{x}{v}} = \frac{1}{4} (\log x - \log y) = \frac{1}{4} \log x - \frac{1}{4} \log y$ **12.** $\ln \frac{\sqrt[3]{x}}{\sqrt[3]{y}} = \frac{1}{3} (\ln x - \ln y) = \frac{1}{3} \ln x - \frac{1}{3} \ln y$ **13.** $\log x + \log y = \log xy$ **14.** $\log x + \log 5 = \log 5x$ **15.** $\ln y - \ln 3 = \ln(y/3)$ **16.** $\ln x - \ln y = \ln(x/y)$ 17. $\frac{1}{2}\log x = \log x^{1/3} = \log \sqrt[3]{x}$ **18.** $\frac{1}{5}\log z = \log z^{1/5} = \log \sqrt[5]{z}$ **19.** $2 \ln x + 3 \ln y = \ln x^2 + \ln y^3 = \ln (x^2 y^3)$ **20.** 4 log $y - \log z = \log y^4 - \log z = \log \left(\frac{y^4}{z}\right)$ **21.** $4 \log (xy) - 3 \log (yz) = \log (x^4y^4) - \log (y^3z^3)$ $=\log\left(\frac{x^4y^4}{y^3\tau^3}\right) = \log\left(\frac{x^4y}{\tau^3}\right)$ **22.** $3\ln(x^3y) + 2\ln(yz^2) = \ln(x^9y^3) + \ln(y^2z^4)$ $= \ln (x^9 y^5 z^4)$

In #23–28, natural logarithms are shown, but common (base-10) logarithms would produce the same results.

23.
$$\frac{\ln 7}{\ln 2} \approx 2.8074$$

24. $\frac{\ln 19}{\ln 5} \approx 1.8295$
25. $\frac{\ln 175}{\ln 8} \approx 2.4837$
26. $\frac{\ln 259}{\ln 12} \approx 2.2362$
27. $\frac{\ln 12}{\ln 0.5} = -\frac{\ln 12}{\ln 2} \approx -3.5850$
28. $\frac{\ln 29}{\ln 0.2} = -\frac{\ln 29}{\ln 5} \approx -2.0922$
29. $\log_3 x = \frac{\ln x}{\ln 3}$
30. $\log_7 x = \frac{\ln x}{\ln 7}$
31. $\log_2(a + b) = \frac{\ln(a + b)}{\ln 2}$
32. $\log_5(c - d) = \frac{\ln(c - d)}{\ln 5}$
33. $\log_2 x = \frac{\log x}{\log 2}$

1 7

34.
$$\log_4 x = \frac{\log x}{\log 4}$$

35. $\log_{1/2}(x + y) = \frac{\log(x + y)}{\log (1/2)} = -\frac{\log(x + y)}{\log 2}$
36. $\log_{1/3}(x - y) = \frac{\log(x - y)}{\log(1/3)} = -\frac{\log(x - y)}{\log 3}$
37. Let $x = \log_b R$ and $y = \log_b S$.
Then $b^x = R$ and $b^y = S$, so that
 $\frac{R}{S} = \frac{b^x}{b^y} = b^{x-y}$
 $\log_b(\frac{R}{S}) = \log_b b^{x-y} = x - y = \log_b R - \log_b S$

38. Let
$$x = \log_b R$$
. Then $b^x = R$, so that
 $R^c = (b^x)^c = b^{c \cdot x}$
 $\log_b R^c = \log_b b^{c \cdot x} = c \cdot x = c \log_b R$

39. Starting from $g(x) = \ln x$: vertically shrink by a factor $1/\ln 4 \approx 0.72$.

40. Starting from $g(x) = \ln x$: vertically shrink by a factor $1/\ln 7 \approx 0.51$.

41. Starting from $g(x) = \ln x$: reflect across the *x*-axis, then vertically shrink by a factor $1/\ln 3 \approx 0.91$.

42. Starting from $g(x) = \ln x$: reflect across the *x*-axis, then shrink vertically by a factor of $1/\ln 5 \approx 0.62$.

- **43.** (b): [-5, 5] by [-3, 3], with Xscl = 1 and Yscl = 1 (graph $y = \ln(2 x)/\ln 4$).
- **44.** (c): [-2, 8] by [-3, 3], with Xscl = 1 and Yscl = 1 (graph $y = \ln(x 3)/\ln 6$).

- **45.** (d): [-2, 8] by [-3, 3], with Xscl = 1 and Yscl = 1 (graph $y = \ln(x 2)/\ln 0.5)$.
- **46.** (a): [-8, 4] by [-8, 8], with Xscl = 1 and Yscl = 1 (graph $y = \ln(3 x)/\ln 0.7)$.

Domain:
$$(0, \infty)$$

Range: $(-\infty, \infty)$
Continuous
Always increasing
Asymptote: $x = 0$
 $\lim_{x \to \infty} f(x) = \infty$

$$f(x) = \log_2(8x) = \frac{\ln(8x)}{\ln(2)}$$

Domain: $(0, \infty)$ Range: $(-\infty, \infty)$ Continuous Always decreasing Asymptote: x = 0 $\lim_{x \to \infty} f(x) = -\infty$

$$f(x) = \log_{1/3}(9x) = \frac{\ln(9x)}{\ln(\frac{1}{3})}$$

Domain: $(-\infty, 0) \cup (0, \infty)$ Range: $(-\infty, \infty)$ Discontinuous at x = 0Decreasing on interval $(-\infty, 0)$; increasing on interval $(0, \infty)$ Asymptote: x = 0 $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} f(x) = \infty$,

Asymptote: x = 0lim $f(x) = \infty$

- **51.** In each case, take the exponent of 10, add 12, and multiply the result by 10.
 - **(a)** 0
 - **(b)** 10
 - (c) 60
 - (d) 80
 - **(e)** 100

(f) 120
$$(1 = 10^0)$$

52. (a) $R = \log \frac{250}{2} + 4.25 = \log 125 + 4.25 \approx 6.3469.$ (b) $R = \log \frac{300}{4} + 3.5 = \log 75 + 3.5 \approx 5.3751$

53.
$$\log \frac{I}{12} = -0.00235(40) = -0.094$$
, so

- $I = 12 \cdot 10^{-0.094} \approx 9.6645$ lumens.
- **54.** $\log \frac{I}{12} = -0.0125(10) = -0.125$, so $I = 12 \cdot 10^{-0.125} \approx 8.9987$ lumens.
- 55. From the change-of-base formula, we know that
 - $f(x) = \log_3 x = \frac{\ln x}{\ln 3} = \frac{1}{\ln 3} \cdot \ln x \approx 0.9102 \ln x.$

f(x) can be obtained from $g(x) = \ln x$ by vertically stretching by a factor of approximately 0.9102.

56. From the change-of-base formula, we know that

$$f(x) = \log_{0.8} x = \frac{\log x}{\log 0.8} = \frac{1}{\log 0.8} \cdot \log x \approx -10.32 \log x.$$

$$f(x) \text{ can be obtained from } g(x) = \log x \text{ by reflecting}$$

 across the x-axis and vertically stretching by a factor of

across the *x*-axis and vertically stretching by a factor of approximately 10.32.

- **57.** True. This is the product rule for logarithms.
- **58.** False. The logarithm of a positive number less than 1 is negative. For example, $\log 0.01 = -2$.
- **59.** $\log 12 = \log (3 \cdot 4) = \log 3 + \log 4$ by the product rule. The answer is B.
- **60.** $\log_9 64 = (\ln 64)/(\ln 9)$ by the change-of-base formula. The answer is C.
- **61.** $\ln x^5 = 5 \ln x$ by the power rule. The answer is A.