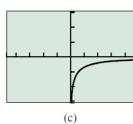
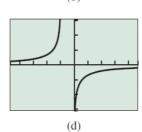
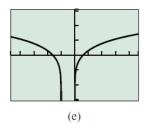
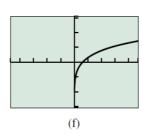

21.
$$f(x) = \ln \frac{x}{x+1}$$
 22. $g(x) = \ln x - \ln (x+1)$


22.
$$g(x) = \ln x - \ln (x + 1)$$


$$23. f(x) = 2 \ln x$$


$$24. g(x) = \ln x^2$$



Solving Logarithmic Equations

8.)
$$\ln(x-2) + \ln(2x-3) = 2 \ln x$$
 $2x^2 - 2x + 6 = x^2$
 $2x^2 - 2x + 6 = x^2$

9.) $\log_6(3x+14) - \log_6 5 = \log_6 2x$
 $3x+14 = 10x$
 $3x+14 = 10x$
 $3x+14 = 10x$

10.) $\log 5x + \log(x-1) = 2$
 $\log 5x + \log(x-1) = 2$

Orders of Magnitude

Mercury: 57.9 billion meters from the Sun

Pluto: 5900 billion meters from the Sun

Mercury: 5.79×10^{10} Pluto: 5.9×10^{12}

Check the log of each quantity.

Pluto's distance is 2 orders of magnitude greater than Mercury.

Order of Magnitude: the common log of a positive quantity

Determine by how many orders of magnitude the quantities differ.

- 1.) A dollar to a penny
- 2.) A kilometer to a meter
- 3.) New York City: Population: 8,000,000 to Earmuff Junction: Population: 8

The Richter Scale magnitude R of an earthquake is:

$$R = \log \frac{a}{T} + B$$
 $R = \log \left(\frac{I}{I_0}\right); I_0 = 1$

where *a* is the amplitude in micrometers of the vertical ground motion at the receiving station, *T* is the period of the associated seismic wave in seconds, and *B* accounts for the weakening of the seismic wave with increasing distance from the epicenter of the earthquake.

B,T are constant.

Comparing Earthquakes

How many times more severe was the 2001 earthquake in Gujarat, India (R = 7.9) than the 1999 earthquake in Athens, Greece (R = 5.9)?

$$R_{1}-R_{2} = \log \frac{\alpha_{1}}{T} + B - (\log \frac{\alpha_{2}}{T} + B)$$

$$= \log \frac{\alpha_{1}}{T} - \log \frac{\alpha_{2}}{T}$$

$$= \log \alpha_{1} - \log T - (\log \alpha_{2} - \log T)$$

$$= \log \alpha_{1} - \log T - (\log \alpha_{2} - \log T)$$

$$= \log \alpha_{1} - \log T - (\log \alpha_{2} + \log T)$$

$$= \log \alpha_{1} - \log \alpha_{2}$$

$$= \log \alpha_{1} - \log \alpha_{2}$$

$$R_{1}-R_{2} = \log \frac{\alpha_{1}}{\alpha_{2}}$$

$$R_{1}-R_{2} = \log \frac{\alpha_{1}}{\alpha_{2}}$$

$$R_{2}-R_{3} = \log \frac{\alpha_{1}}{\alpha_{2}}$$

$$R_{3}-R_{4} = \log \frac{\alpha_{1}}{\alpha_{2}}$$

$$R_{4}-R_{5} = \log \frac{\alpha_{1}}{\alpha_{2}}$$

$$R_{5}-R_{6} = \log \frac{\alpha_{1}}{\alpha_{2}}$$

$$R_{7}-R_{7} = \log \frac{\alpha_{1}}{\alpha_{2}}$$

Chemistry

The acidity of a water-based solution is measured by the concentration of hydrogen ions in the solution (in moles per liter) given by:

$$pH = -\log[H^+]$$

Vinegar has a pH of 2.4 and Baking Soda has a pH of 8.4.

a.) What are their Hydrogen Ion concentrations?

Baking Soda: 8.4 = -log [H+] H+= 3.98 × 10 molis/1,tm.

b.) How many times greater is the hydrogen-ion concentration of the vinegar than that of the baking soda?

$$\frac{3.98 \times 10^{-3}}{3.98 \times 10^{-9}} = \frac{1000000}{10000000}$$

c.) By how many orders of magnitude do the concentrations differ?

Newton's Law of Cooling

$$T(t) = T_m + (t_0 - T_m)e^{-kt}$$

 T_m : the temperature of the surrounding medium

 T_0 : initial temperature of the object

A hard boiled egg at temperature $96^{\circ}C$ is placed in $16^{\circ}C$ water to cool. Four minutes later the temperature of the egg is $45^{\circ}C$. Use Newton's Law of Cooling to determine when the egg

will be $20^{\circ}C$.

be
$$20^{\circ}C$$
.

 $45 = 16 + (96 - 16)e^{-4k}$
 $20 = 16 + (96 - 16)e^{-2537t}$
 $29 = 80e^{-4k}$
 $4 = 80e^{-.2537t}$
 $4 = 80e^{-.2537t}$

$$20 = 16 + (96 - 16)e$$

$$4 = 80e$$

$$\frac{4}{80} = e^{-.2537t}$$

$$\frac{1}{80} = e^{-.2537t}$$

$$\frac{1}{2537} = \frac{1}{.2537}$$

DEFINITION Decibels

The level of sound intensity in decibels (dB) is

$$\beta = 10 \log(III_0),$$

where β (beta) is the number of decibels, I is the sound intensity in W/m², and $I_0 = 10^{-12} \,\mathrm{W/m^2}$ is the threshold of human hearing (the quietest audible sound intensity).

How loud is the train in the subway?

e train in the subway?
$$\beta = |0| \log \left(\frac{10^{-2}}{10^{-12}}\right)$$

$$= |0| \log \left(10^{10}\right)$$

Table 3.17 Approximate Intensities of Selected Sounds

Sound	(W/m ²)
Hearing threshold	10-12
Soft whisper at 5 m	10-11
City traffic	10-5
Subway train	10-2
Pain threshold	108
Jet at takeoff	10^{3}

Source: Adapted from R. W. Reading, Exploring Physics: Concepts and Applications. Belmont, CA: Wadsworth, 1984.