3.5 Extension - Future/Present Values

Future Value of an Annuity $FV = R \frac{(1+r)^t - 1}{r}$ R = Dollar amount of equal payments $FV = R \frac{\left(1 + \frac{r}{n}\right)^{nt} - 1}{\left(\frac{r}{n}\right)}$

To account for a rate that is compounded more frequently than annually, n is added. n = number of compounds per year.

1.) At the end of each quarter year, Emily makes a \$500 payment into the Lanaghan Mutual Fund. If her investments earn 8% annual interest compounded quarterly, what will be the value of Emily's annuity in 20 years?

ears?
$$FV = 500 \left(1 + \frac{.08}{4} \right)^{4.20} - 1$$

$$\left(\frac{.08}{4} \right)$$

$$\$ 96.885.98$$

How long until her investment = 250,000? $250000 = 500 \left[\left(1 + \frac{.08}{4} \right)^{4} + -1 \right]$ $\left(\frac{.08}{4} \right)^{4}$ $10 = \left(1 + \frac{.08}{4} \right)^{4} + 1$ $11 = \left(1 + \frac{.08}{4} \right)^{4}$ $\log_{10} \left(1 + \frac{.08}{4} \right)^{4} = 4t$ 1 = 30.27 years

The PRESENT VALUE is the net amount of money put into an annuity. The periodic and equal payments made on a loan or mortgage actually constitute an annuity.

Present Value of an Annuity $PV = R \frac{1 - (1+i)^{-n}}{i}$

2.) Hannah obtains a 30-year fixed mortgage of \$250,000 with an APR of 4.5%. What is her monthly payment?

R=\$1266.71

How much does the loan actually cost Hannah?

Hannah: \$1500.00

-12t

250000=1500. $1-(1+\frac{.04r}{12})$ (-12t)

(375=(1+\frac{.04r}{12})^{-12t}

(10g)

(1+\frac{.04r}{12})

7=21.84 years

