Honors Pre-Calculus

CW: 7.5

Name_____ Date Period

The feasible region determined by a system of constraints is given. Find the minimum and maximum values of the objective function for the given feasible region.

1.)
$$C = x - y$$

2.)
$$C = x + 5y$$

Solve the system.

3.)
$$y \ge x^2 - 1$$
$$x^2 + y^2 \le 4$$

4.)
$$y \ge |x| - 3$$

5.) Given the following constraints and cost function, use your calculator to find the max and min values.

$$C = 10x + 5y$$

$$4x + y \ge 180$$
$$x + y \ge 90$$

$$10x + 5y \le 800$$

$$x \ge 0; y \ge 0$$

$$y \ge -4 \times +180$$
 $y \ge - \times +90$
 $y \le -2 \times +160$

7.) Paul's diet is to contain at least 24 units of carbohydrates and 16 grams of protein. Food substance A costs \$1.40 per unit and each unit contains 3 units of carbohydrates and 4 units of protein. Food substance B costs \$0.90 per unit and each unit contains 2 units of carbohydrates and 1 unit of protein. How many units of each food substance should be purchased in order to minimize cost? What is the

minimum cost? $X - \{ \omega_{o} \leq S_{o} \} \text{ substance } B$ $Y - \{ \omega_{o} \leq S_{o} \} \text{ substance } B$ $Z = \{ 1.4 \times 4.99 \}$ $Z = \{ 1.4$

produced to maximize profit? x : A y = b $C = 2.25 \times + 24$ x + y = 3000 x + y = 3000(0,0) = 0