Honors Pre-Calc Chapter 2 Test Review

Name	KEY	,
Date 10/2	41× 0	_Block

2.1 Quadratic Functions

- 2.1 Quadratic Functions

 1. Write the quadratic in the square by completing the square: $f(x) = -3x^2 6x 1$ Vertex: (-1, 2) $f(x) = -3(x^2 + 2x) 1$ $= -3(x^2 + 2x + 1 1) 1$
- 2. Write the equation of the parabola that contains point P, P(-1, 12), with vertex V(1, 0). $y = \alpha (x h)^{2} + k$ $|2 = \alpha (-1 1)^{2} + 0$ $|2 = 4\alpha$

3. What is the average rate of change of
$$f(x) = -3x^2 - 6x - 1$$
 over the interval

A. $[-3,0]$
B. $[a,b]$

$$\frac{f(b) - f(-3)}{b-a} = \frac{-1+10}{b-a} = \boxed{3}$$

4. At a fourth of July celebration, fireworks are shot by remote control into the air from a pit that is 10 feet below the earth's surface. Round your answers to the nearest tenth.

Model: $f(t) = -\frac{1}{2}(32)t^2 + v_0t + s_0$, where t is time (sec), v_0 is the initial velocity and s_0 is the initial height (ft).

- A. Find an equation that models the height of an aerial firework t seconds after it is shot upward with an initial velocity of 80 ft/s. $f(t) = -16t^2 + 80t - 10$
- B. What is the maximum height above ground level that the firework will reach? How many seconds does it take to reach that maximum height? Max Height: 90 ft | at |t = 2.5 seconds
- C. Assuming a piece of the firework remains after it ignites, how many seconds will it take the firework to hit the ground after it is shot upward?

- + Trih 2.2 Power Functions 5. Write each statement as a power function equation. Use k for the constant of variation.
 - A. The volume, V, of a circular cone with fixed height is proportional to the square of its radius, r. V= Kr2 or V= Kr2h

 Constant couse his fixed.
 - B. The centripetal force, F, acting on a satellite in orbit around the earth is inversely proportional to the square of the radius, r, of its orbit.
- The current in a simple electrical circuit is inversely proportional to the resistance. If the current is 80 amps when the resistance is 50 ohms, find the current when the resistance is 22 ohms.

$$C = \frac{k}{r}$$
 80 = $\frac{k}{50}$ $k = 4000$ $\frac{4000}{22} = C = 181.8 \text{ amps}$

7. Complete the table using the graph to the right that represents all power functions: $f(x) = kx^a$, where k is the constant of variation and a is the power of x.

Graph	а	b	С	d	e	f	g	h
k +/-	+	+	+	+	_		_	-
a range	_	q > 1	a=1	04441	06461	1	a>1	

Match the equation to one of the curves labeled in the figure. List whether the function is odd or even.

$$\frac{g}{a} \underbrace{O/E}_{C} C. \ f(x) = -2x^{4/3}$$

8. For the function: $f(x) = -x^{\frac{2}{3}}$, list the following parameters and sketch the graph.

k	mary
а	2/3
Domain:	(-0,00)
Range:	(-00,07
Increasing:	(-0,0)
Decreasing:	(0,00)
Symmetry:	Even - Reflect in y-axis
Boundedness:	Above
Extrema:	(0,0)
Asympote(s):	NOME

2.3 Polynomial Functions of Higher Degree

9. For the function $f(x) = -4x^3 - 4x^2 + 24x$, find the zeros and describe the end behavior using limit notation.

$$f(x) = -4 \times (x^{2} + x - 6)$$

$$= -4 \times (x + 3)(x - 2)$$

$$= -4 \times (x + 3)(x - 2)$$

$$f(x) = -\frac{1}{2}(x+2)(x+1)^{2}(x-1)^{3} + 1$$

11. Sketch a graph of the polynomial functions, state the degree and end behavior:

A.
$$f(x) = -x^3(x-2)$$

B.
$$f(x) = (x-1)^3(x+2)^2$$

2.2.5 Real & Complex Zeros of Polynomial Functions

Explain how you know that the function $p(x) = -x^3 + 5x - 2$ must have a zero in the interval [-3,-2].

$$f(-3) = 10$$
 Surtch from + to -
 $f(-2) = -4$ must cross axis.

13. For $f(x) = 2x^5 + 9x^4 - 3x^2 - 10$, use synthetic division and the remainder theorem to evaluate f(-1).

14. For $f(x) = 4x^3 + 9x^2 - 3x - 10$, List all possible rational zeros. Show that (x + 2) is a factor. Identify all other zeros. Then write the polynomial in completely factored form. $\pm \frac{1}{2}, \frac{2}{5}, \frac{5}{4}, \frac{2}{5}$

15. Find a polynomial function, in standard form, with real coefficients and a leading coefficient of 3 that has the given

Find a polynomial function, in standard form, with real coefficients and a leading coefficient of 3 zeros:
$$x = 0, 0, \frac{2}{3}, 4-i$$
. $f(x) = x^2 (3x-2)(x-4-i)(x-4+i)$

$$= x^2 (3x-2)(x^2-8x+17)$$

$$= 3x^5 - 26x^4 + 67x^3 - 34x^2$$

16. The function, $f(x) = x^4 - 6x^3 + 11x^2 + 12x - 26$ has a zero at 3 - 2i. Find all of the zeros. Write the function as a product of irreducible quadratic factors. Then write a linear factorization. (x-3-2)(x-3+2)

product of irreducible quadratic factors. Then write a linear factorization.
$$(x-3-2i)(x-3+2i)$$

$$y^{2} - 2 \qquad (x^{2}-6x+13)$$

$$x^{3}-6x+13 \qquad x^{4}-6x^{3}+11x^{2}+12x-26$$

$$-2x^{2}+12x-26$$

$$-2x^{2}+12x-26$$

$$-2x^{2}+12x-26$$

$$(x-3+2i)(x-3-2i)$$

$$(x^{2}-6x+13)(x^{2}-2)$$

$$f(x) = (x-3+2i)(x-3-2i)$$

$$(x+\sqrt{2})(x-\sqrt{2})$$

17. Show that all real zeros of $f(x) = 2x^3 - 5x^2 - 14x + 8$, must exist within [-4,8]. (Hint: Use synthetic division to verify the upper and lower bounds of the real zeros of f)

2.6 Graphs of Rational Functions

18.
$$f(x) = \frac{x^2 - x - 12}{x^2 - 5x + 4}$$
 Graph number 18 to the right.

(x-A)(x+3) (x-A)(x-1)

Vertical Asymptote(s):	x= +1 hole @ x=4
Horizontal Asymptote:	y=1
x-int (s):	(-3,0)
y-int:	(0,-3)
Asymptote Behavior:	$ x\rightarrow 1 \qquad x\rightarrow 1 $
End Behavior:	1m F(x) x>0=1= 1mf(x) x>-0

19.
$$f(x) = \frac{x^4 - 2x + 1}{x + 2}$$

Vertical Asymptote(s):	× = - 2
End Behavior Asymptote:	$y = x^3 - 2x^2 + 4x - 10$
x-int (s):	(1,0)
y-int:	(0, 1/2)
Asymptote Behavior:	13-5-5 X2-7-
End Behavior: 🔏	x > 0

$$20. \ f(x) = \frac{2}{x^3 - x}$$

x - x			1
Vert Asymptote(s):	x=0, x=1,	x=-1	
End Behavior Asymptote:	y=0		
x-int (s):	اعمد		8
y-int:	Love		
Asymptote Behavior:	11m F(y) = -0	1 m f(x) ×→-1+	= 00
End Behavior:	$\lim_{x\to 0^{-}} f(x) = \infty$ $\lim_{x\to 0^{-}} f(x)$	lim fu) x-20+ limfix	
wF(y) = 0	x-> 0	×>1+ 5	. *

2.7 Solving Rational Equations

Solve and check for extraneous solutions.

Solve and check for extraneous solutions.
21.
$$\frac{4x(x^{-1})}{x+4} \cdot \frac{3(x^{-1})}{x-1} = \frac{15}{x^2+3x-4} \qquad (4x+3)(x-1) = 0$$

$$4x^2-4x+3x+12 = 17 \qquad x = -\frac{3}{4}$$

$$4x^2-4x+3x+12 = 17 \qquad x = -\frac{3}{4}$$

22.
$$\frac{x+3}{x} - \frac{2}{x+3} = \frac{6}{x^2 + 3x}$$
 $(x+3)(x+1)=0$
 $x^2 + 6x + 9 - 2x = 6$
 $x^2 + 9x + 3 = 0$ $(x+3)(x+1)=0$

- 23. Determine how many mls of a pure acid solution should be added to a 200 ml solution that is 45% concentration to
 - .75 = 90+x produce a 75% acid solution.

2.8 Solving Polynomial Inequalities

Solve the inequality using a sign chart. Support your answer graphically.

24.
$$f(x) = 2x^4 - 3x^3 - 6x^2 + 5x + 6$$

$$(x-2)(2x-3)$$
 (210)

25.
$$f(x) = \frac{x^3 - x}{x^2 + 1} \ge 0$$

$$\frac{x(x+1)(x-1)}{x^2 + 1}$$

$$\frac{x^2 + 1}{x^2 + 1}$$